# Brewing Water

David Jones Keepers of Craft Homebrew Club



- Typically about 90-95% of the beer
- It's not just dihydrogen monoxide
- Typically available from a number of sources:
  - Distilled water
    - pure  $H_2O$ , but not suitable for AG without treatment
    - probably recommended for extract?
  - Bottled
  - Reverse Osmosis (RO)
  - City water may require treatment/filtration
  - Hose spigot use RV hose
  - Well water Know Your Numbers

### **City Water Treatment**

- If your city water tastes fine, then there's no need to worry
- City water is disinfected with <u>chlorine</u>/chloramines
- These react with wort phenols to form chlorophenol off-flavours
  - Typically described as band-aid/antiseptic flavour
  - Perceived at very low levels (part per BILLION)
- Chlorine is easily boiled off
- Chlorine & chloramine can easily be removed within minutes by addition of <sup>1</sup>/<sub>4</sub> Campden tablet/KMS in 5gal water
- KMS reduces chloramine to ammonium and chloride ions
  - both are beneficial to beer in the quantities generated by this.
  - The ammonium ion nourishes the yeast (FAN),
  - The chloride ion?... find out later



# Water Chemistry

we need to talk about pH & ions

### Chemistry Time - pH

- pH is a measure of acidity.
  - negative of  $log_{10}$  of the molar concentration of hydronium (H<sub>3</sub>O<sup>+</sup>) ions in water.
  - 1 pH difference is 10× more acidic i.e. pH 6 is 10× more acidic than 7.
  - Typically expressed on a scale from 0-14 pH.
- A pH of 7.0 is neutral pure  $H_2O$  pH 7
- pH <7.0 is acidic White vinegar ~ pH 3
- pH >7.0 is basic Ammonia ~ pH 11.5
- Beer ~ pH 4

#### Beer pH Values

- 3.8 4.5 'normal' for most ales and lagers
  - Lagers tended to be around 3.9 4.1
  - Ales: 4.0 4.4 to achieve optimal taste and stability.
  - Mild/dark ales: 4.1 4.3
  - Sour beers: 3.1-3.8
- pH > 4.5 likely not 'food safe'
  - Possibility of bacterial contamination
- pH 4.0 can start to create a thin drinking experience and even add an unintentional tartness

### Water pH

- If pH is too high (basic) then food grade acid (phosphoric, lactic) can be used to acidify the water.
  - Should have a well calibrated pH meter to do this
- Acidified malts: 1% of Acidulated malt in the mash reduces the pH by ~0.1.
  - Acidulated Malt is produced by using lactic acid that is generated by the naturally occurring lactic bacteria on grain
- Water in the Kalamazoo area is slightly basic.
  - Good for stouts & darker beers.
  - Also very good for most other beer styles as well (look how many great breweries we have here!)
- Also quite hard (dissolved salts)

### Water Hardness

- Hardness in water is caused by calcium & magnesium ions.
  - Total Hardness: combined concentration of calcium and magnesium.
- Temporary hardness
  - easily removed by boiling or through precipitation with lime (calcium hydroxide).
  - typically high in bicarbonates (forms carbonates)
- Permanent hardness is simply the hardness that is not removed by boiling water.
  - caused by chlorides, nitrates and sulphates of calcium and magnesium
  - these salts are highly soluble & are not precipitated by boiling.
- Water is often categorised according to the following degrees of hardness:
  - <75 ppm soft
  - 75-150 ppm moderately hard
  - 150-300 ppm hard
  - > 300 ppm very hard

### Residual Alkalinity (RA)

- Residual Alkalinity (RA) determines how resistant water is to pH change.
  - If the RA is high, then more acid, (acidifed malts or acid addition) is required to adjust the pH.
  - Low RA indicates that the grain additions alone may be enough to get to the desired mash pH.

#### Water Warning

- Leaving pure (or RO) water standing for extended periods of time causes pH to lower
  - The moment water comes in contact with air, CO<sub>2</sub> gas begins dissolving into it, forming carbonic acid.
  - The actual pH, therefore, will often be <7.
  - Can occur using store bought distilled water: a friend had two brands and they were over a whole point different.
  - Another friend reported low mash efficiencies.



### Mash Chemistry

how water affects the mash

### Mash pH

- Grains are slightly acidic in the mash & naturally lower pH
  - dark grains are more acidic than lighter malts
- Mash pH should be in the range of 5.1-5.8
  - 5.2-5.6 is optimal for amylase enzyme activity.
  - pH > 5.8, extracts astringent tannins from the grain husks.
- If pH is too high (basic) then food grade (phosphoric, lactic) acid can be used to acidify the sparge water during lautering.
  - Not recommended to correct mash pH directly due to buffering power of the mash.
- Incorrect mash pH range adversely affects conversion

### Brewing lons for Mash Chemistry

- Calcium (Ca<sup>2+</sup>) is instrumental to many yeast, enzyme, and protein reactions, both in the mash and in the boil.
  - It promotes clarity, flavour, and stability in the finished beer.
- Magnesium (Mg<sup>2+</sup>) is an important yeast nutrient in small amounts (10 -20 ppm), but >50 ppm imparts a bitter taste.
  - Seems unnecessary to add too much.
- Alkalinity (usually expressed as CaCO<sub>3</sub>). Carbonate & bicarbonate are alkaline (neutralise acidity from dark malts) and are possibly the most important ions at controlling pH for all grain brewing.
  - The principal form for carbonates in wort is bicarbonate (HCO<sub>3</sub>-).

### Brewing lons Affecting Flavour

- Sulphate (SO<sub>4</sub><sup>2-</sup>) accentuates hop bitterness, making it seem drier & more crisp. At concentrations over 400 ppm, the resulting bitterness can become astringent.
- Sodium (Na<sup>+</sup>). At levels 70 150 ppm sodium rounds out the beer flavours & accentuates the maltiness; above 200 ppm the beer will start to taste... salty.
  - can occur in very high levels, particularly if using a home water softener.
- Chloride (Cl<sup>-</sup>) accentuates the malty flavour and roundness and fullness in the beer.



## Influence of Brewing Water

How cities' water influence their historical styles of beer

### Water Styles of Historic Brewing Cities

• ppm=parts per million (1mg/1L).

| City                | Calcium<br>(Ca²+) | Magnesium<br>(Mg²+) | Sodium<br>(Na⁺) | Sulphate<br>(SO <sub>4</sub> <sup>2-</sup> ) | Chloride<br>(Cl <sup>.</sup> ) | Bicarbonate<br>(HCO <sub>3</sub> -) | Beer Style      |
|---------------------|-------------------|---------------------|-----------------|----------------------------------------------|--------------------------------|-------------------------------------|-----------------|
| Pilsen              | 10                | 3                   | 3               | 4                                            | 4                              | 3                                   | Pilsner         |
| Dortmund            | 225               | 40                  | 60              | 120                                          | 60                             | 220                                 | Export Lager    |
| Vienna              | 163               | 68                  | 8               | 216                                          | 39                             | 243                                 | Vienna Lager    |
| Munich              | 109               | 21                  | 2               | 79                                           | 36                             | 171                                 | Oktoberfest     |
| London              | 52                | 32                  | 86              | 32                                           | 34                             | 104                                 | British Bitter  |
| Edinburgh           | 100               | 18                  | 20              | 105                                          | 45                             | 160                                 | Scottish Ale    |
| Burton              | 352               | 24                  | 44              | 820                                          | 16                             | 320                                 | India Pale Ale  |
| Dublin              | 118               | 4                   | 12              | 54                                           | 19                             | 319                                 | Dry Stout       |
| Typical Range       | 50-150            | 10-30               | 0-150           | 50-150<br>150-350                            | 0-250                          | 0-50<br>50-150<br>150-250           |                 |
| Balanced<br>Profile | 75                | 10                  | 0-50            | 50-70                                        | 50-70                          | 100                                 | Brewer's Friend |

How to Brew, John Palmer. Howtobrew.com

### Local Water Numbers

- Water quality reports are primarily concerned with the safe drinking water laws regarding contaminants like pesticides, bacteria and toxic metals.
- As brewers, we are interested in the secondary or aesthetic standards that have to do with taste and pH.
- In Portage, we see quite a bit of variability in the ground water across the 11 local well fields. It appears that the same variability exists in Kalamazoo.
- The water being delivered to properties is typically blended from a number of different well sources to meet safe drinking water requirements
  - my house in Portage is a mixture being pumped from 3 well sites.
- KAR Labs offered a very good water report.
  - Pace Analytical seem to offer similar service
- Alkalinity refers to the total amount of bases in water expressed in ppm of equivalent calcium carbonate.
- Hardness is the concentration of metal ions (primarily Ca<sup>2+</sup> and Mg<sup>2+</sup>) expressed in ppm of equivalent calcium carbonate.

### Local Water Results

2

| Location                 | рН      | Ca <sup>2+</sup> | Mg²⁺ | <b>SO</b> <sub>4</sub> <sup>2-</sup> | Na⁺       | CI <sup>.</sup> | HCO <sub>3</sub> - | Hardness<br>CaCO <sub>3</sub> | NO <sub>3</sub> - | CO <sub>3</sub> <sup>2-</sup> | Alkalinity<br>CaCO <sub>3</sub> |
|--------------------------|---------|------------------|------|--------------------------------------|-----------|-----------------|--------------------|-------------------------------|-------------------|-------------------------------|---------------------------------|
| Kalamazoo                |         | 85               | 33   | 40                                   | 36        | 74              |                    |                               |                   |                               |                                 |
|                          |         | 102              | 30   | 42                                   | 36        | 74              | 188                |                               |                   |                               |                                 |
|                          | 7.72    | 120              | 32   | 40                                   | 36        | 117             |                    | 350                           |                   |                               | 286                             |
| Average                  | 7.72    | 102              | 32   | 41                                   | 36        | 88              | 188                | 350                           |                   |                               | 286                             |
|                          |         |                  |      |                                      |           |                 |                    |                               |                   |                               |                                 |
| Portage                  | 8.1     | 99               | 29   | 36                                   | 52        | 96              | 374                | 368                           | 0.4               | <1                            | 310                             |
|                          | 7.4     | 86.6             | 28   | 39                                   | 50        | 108             | 285                | 332                           | 0.3               | 0.67                          | 286                             |
|                          | 7.5-8.0 |                  |      | 36/27/49                             | 63/41/149 | 119/68/303      |                    |                               |                   |                               |                                 |
| Average                  | 7.8     | 93               | 29   | 38                                   | 51        | 102             | 330                | 350                           | 0.4               | 0.7                           | 298                             |
|                          |         |                  |      |                                      |           |                 |                    |                               |                   |                               |                                 |
| Hillsdale Artisinal Well | 7.4     | 82.4             | 23.3 | 15                                   | 11.4      | 20.1            | 312                | 302                           | 1.4               | 0.74                          | 313                             |
|                          |         |                  |      |                                      |           |                 |                    |                               |                   |                               |                                 |



## Water Adjustments

aka why you're (hopefully) still listening

### Methods to Adjust Water

- Dilution of tap water with RO/distilled water
  - Good for well water & city water
- Filtration removes particulates & chlorine, but this won't affect your ions.
- Salt addition for RO & dissolved water.
- In general, never use softened water for mashing (without adjustment); the wort needs the replaced calcium.
- Brewers in historical brewing cities often treated their water to add & remove minerals, or endured long complex mashes to overcome the issues their water caused.

### Common brewing salts

- Sodium Chloride (NaCl)
  - source of sodium (Na+) & chloride (Cl-)
- Baking Soda (NaHCO<sub>3</sub>)
  - source of sodium (Na+) & bicarbonate (HCO<sub>3</sub>-)
- Calcium Carbonate (CaCO<sub>3</sub>)
  - source of calcium (Ca<sup>2+</sup>) & carbonate (CO<sub>3</sub><sup>2-</sup>)
  - Pretty insoluble

- Calcium Chloride (CaCl<sub>2</sub>)
  - source of calcium (Ca<sup>2+</sup>) & 2×chloride (Cl<sup>-</sup>)
- Calcium Sulphate (CaSO<sub>4</sub>)
  - source of calcium (Ca<sup>2+</sup>) & sulphate (SO<sub>4</sub><sup>2-</sup>)
- Epsom salts (MgSO<sub>4</sub>)
  - source of magnesium (Mg<sup>2+</sup>) & sulphate (SO<sub>4</sub><sup>2-</sup>)

### 1g/gallon salt additions

- i.e. if 1g of gypsum was added to 1 gallon of water, 61.5ppm of calcium & 147.4ppm of sulphate would be added
- if 10g gypsum was added to 5 gallons of water it would be double the ppm (123 Ca<sup>2+</sup>, 294.8 SO<sub>4</sub><sup>2-</sup>)
- NB it is not possible to simply add calcium to your water; using calcium chloride means both calcium & chloride ions are added together.

|                                          | Ca <sup>2+</sup> | Mg <sup>2+</sup> | Na⁺   | <b>SO</b> <sub>4</sub> <sup>2-</sup> | Cl-   | HCO <sub>3</sub> - |
|------------------------------------------|------------------|------------------|-------|--------------------------------------|-------|--------------------|
| Gypsum (CaSO₄)                           | 61.5             |                  |       | 147.4                                |       |                    |
| Table Salt (NaCl)                        |                  |                  | 103.9 |                                      | 165.0 |                    |
| Epsom Salt<br>(MgSO₄)                    |                  | 26.1             |       | 103.0                                |       |                    |
| Calcium<br>Chloride (CaCl <sub>2</sub> ) | 72.0             |                  |       |                                      | 127.4 |                    |
| Baking Soda<br>(NaHCO <sub>3</sub> )     |                  |                  | 72.0  |                                      |       | 190.0              |
| Chalk (CaCO <sub>3</sub> )               | 105.8            |                  |       |                                      |       | 158.4              |

### Making Water Adjustments

- If you use city or well water, you NEED to know your water profile to be able to make any adjustments.
- Otherwise, 10G of RO water can cost <\$5 for each brew day & <¢50 for salts.
- If you wanted to make the Kalamazoo water profile using distilled or RO water you'd make the following additions:

|            |                    | Ca <sup>2+</sup> | Mg <sup>2+</sup> | Na⁺  | SO <sub>4</sub> <sup>2-</sup> | Cl-  | CO <sub>3</sub> <sup>2-</sup> |
|------------|--------------------|------------------|------------------|------|-------------------------------|------|-------------------------------|
| 2.3g       | MgSO <sub>4</sub>  |                  | 11.8             |      | 46.6                          |      |                               |
| 2.9g       | CaCl <sub>2</sub>  | 41.7             |                  |      |                               | 73.8 |                               |
| 2.5g       | NaHCO <sub>3</sub> |                  |                  | 36.7 |                               |      | 96.9                          |
| 2.9g       | CaCO <sub>3</sub>  | 60.7             |                  |      |                               |      | 90.9                          |
| Total      |                    | 102.4            | 11.8             | 36.7 | 46.6                          | 73.8 | 187.7                         |
| Kalamazoo  |                    | 102.0            | 30               | 36.0 | 42.0                          | 74.0 | 188.0                         |
| Difference |                    | 0.4              | -18.2            | 0.7  | 4.6                           | -0.2 | -0.3                          |

### Sulphate: Chloride ratio

- Sulphate promotes bitterness of hops
- Chloride promotes malty character
- Playing with the ratio will affect the perception of the beer
  - Higher sulphate, more bitter
  - Higher chloride it'll be maltier
  - 1:1, your water will lend a balanced character to the beer.
  - 1.5:1 will emphasise the hop character.
  - > 5:1 the hop character will be accentuated to the point that most drinkers find it unpleasant.
  - For NEIPAs, it's common to see the ratio more towards the chloride i.e. 1:3
    - Accentuates the maltiness & body of the beer over bitterness
- Usually altered by adding calcium chloride (CaCl<sub>2</sub>) and calcium sulfate (CaSO<sub>4</sub>)
- Keep within recommended ranges for the style

### Measuring water

#### • pH

- Strips or meter
- Strips easier, but not as accurate
- Meter expensive & time consuming
- Calibration, storage
- Total Dissolved Solids
  - Conductivity indicates dissolved minerals

### TL;DR version?

- Most brewers in SW MI that I've spoken with don't worry about this they just filter & boil their brew water to remove chlorine & chloramine.
- One brewery asks their city to warn them when they flush their water lines as this can raise the chlorine/chloramine to undesirable levels.
- Kalamazoo breweries makes great beer with City water, so don't worry about it too much.
- Avoid using softened water, it's low on calcium salts & higher in sodium.
- At 2016 HBC, somebody spent 40 mins talking about this and basically said, "if you add about 10g of calcium salts to your RO mash water, you should be good".
- RDWHAHB; adding brewing salts is not necessary and is a matter of the style of the beer as well as the brewer's taste.

### Simple additions for RO water

- Pale ale or IPA
  - adding 7 grams of gypsum to 5 gallon batch will provide 63 ppm of calcium and 148 ppm of sulphate.
  - desirable range for both calcium and sulphate for a hoppy beer.
  - also likely to give an optimum mash pH as well.
- Malty beers
  - Adding 3 grams of calcium chloride to a 5 gallon batch of Octoberfest *or brown ale* maybe be just the ticket to improving a brew.
  - chloride enhances the fullness or "roundness" of malt flavor, and gives a perception of sweetness to the beer.
- European style lagers
  - less sulphate is desirable and often it is completely left out.
  - It wouldn't be unusual to brew a German pilsner without any additions to RO water at all.
- Stouts
  - Dark, roasted malts are acidic; the mash pH will need to be raised when sing RO.
  - Add 2-3 grams of baking soda to 4.0 gallons mash water should raise mash pH to desired levels.

- Depends on style of beer
- Stout, IPA I typically use from outdoor spigot with RV hose & under sink filter
- NEIPA, lagers etc. build profiles with RO & salts
- Cut city water with RO (approx. 50/50)
  - Possibly add chloride/sulphate to accentuate flavours
- Lamotte test kits



### **Calculation Tools**

#### • Spreadsheets:

- EZ Water: <a href="http://www.ezwatercalculator.com/">http://www.ezwatercalculator.com/</a>
- John Palmer's Water Calculator:



- http://howtobrew.com/assets/img/assets/Palmers-Water-Adj-Gallons-4pt0.xls
- Now available as an app!
- Bru'n Water: <u>https://sites.google.com/site/brunwater/</u>
- Website:
  - Brewer's Friend <a href="https://www.brewersfriend.com/water-chemistry/">https://www.brewersfriend.com/water-chemistry/</a>
- Software:
  - BeerSmith <a href="http://beersmith.com/">http://beersmith.com/</a>
  - BreWater program: <u>http://www.brewater.net/download.html</u>

### **Recommended Reading**

- John Palmer & Colin Kaminski Water: A Comprehensive Guide for Brewers
- Almost anything by John Palmer
- Ditto Randy Mosher
- A Brewing Water Chemistry Primer by AJ deLange https://www.homebrewtalk.com/showthread.php?t=198460/
- Water Knowledge by Martin Brungard
  <u>https://sites.google.com/site/brunwater/water-knowledge</u>

### **Reverse Osmosis Water**

- Next best thing to distilled water
  - 'as pure' as you're likely to get it
- Removes approx. 95% to 99% of the dissolved salts
- Possibly recommended for extract brewing?
  - ions present in malting water will remain in the extract
- Uses pressure & membrane to purify the water
- Waste water (brine) higher in dissolved ions
- RO & distilled water will require salt additions for brewing requirements